Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(11): 105295, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37774976

RESUMO

Loss of functional RAB18 causes the autosomal recessive condition Warburg Micro syndrome. To better understand this disease, we used proximity biotinylation to generate an inventory of potential RAB18 effectors. A restricted set of 28 RAB18 interactions were dependent on the binary RAB3GAP1-RAB3GAP2 RAB18-guanine nucleotide exchange factor complex. Twelve of these 28 interactions are supported by prior reports, and we have directly validated novel interactions with SEC22A, TMCO4, and INPP5B. Consistent with a role for RAB18 in regulating membrane contact sites, interactors included groups of microtubule/membrane-remodeling proteins, membrane-tethering and docking proteins, and lipid-modifying/transporting proteins. Two of the putative interactors, EBP and OSBPL2/ORP2, have sterol substrates. EBP is a Δ8-Δ7 sterol isomerase, and ORP2 is a lipid transport protein. This prompted us to investigate a role for RAB18 in cholesterol biosynthesis. We found that the cholesterol precursor and EBP-product lathosterol accumulates in both RAB18-null HeLa cells and RAB3GAP1-null fibroblasts derived from an affected individual. Furthermore, de novo cholesterol biosynthesis is impaired in cells in which RAB18 is absent or dysregulated or in which ORP2 expression is disrupted. Our data demonstrate that guanine nucleotide exchange factor-dependent Rab interactions are highly amenable to interrogation by proximity biotinylation and may suggest that Micro syndrome is a cholesterol biosynthesis disorder.


Assuntos
Biotinilação , Esteróis , Proteínas rab de Ligação ao GTP , Humanos , Colesterol/biossíntese , Colesterol/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HeLa , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab3 de Ligação ao GTP/metabolismo , Esteróis/biossíntese , Esteróis/metabolismo , Células Cultivadas , Técnicas de Silenciamento de Genes , Transporte Proteico/genética
2.
Front Oncol ; 13: 1194515, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397358

RESUMO

Introduction: The composition and remodelling of the extracellular matrix (ECM) are important factors in the development and progression of cancers, and the ECM is implicated in promoting tumour growth and restricting anti-tumour therapies through multiple mechanisms. The characterisation of differences in ECM composition between normal and diseased tissues may aid in identifying novel diagnostic markers, prognostic indicators and therapeutic targets for drug development. Methods: Using tissue from non-small cell lung cancer (NSCLC) patients undergoing curative intent surgery, we characterised quantitative tumour-specific ECM proteome signatures by mass spectrometry. Results: We identified 161 matrisome proteins differentially regulated between tumour tissue and nearby non-malignant lung tissue, and we defined a collagen hydroxylation functional protein network that is enriched in the lung tumour microenvironment. We validated two novel putative extracellular markers of NSCLC, the collagen cross-linking enzyme peroxidasin and a disintegrin and metalloproteinase with thrombospondin motifs 16 (ADAMTS16), for discrimination of malignant and non-malignant lung tissue. These proteins were up-regulated in lung tumour samples, and high PXDN and ADAMTS16 gene expression was associated with shorter survival of lung adenocarcinoma and squamous cell carcinoma patients, respectively. Discussion: These data chart extensive remodelling of the lung extracellular niche and reveal tumour matrisome signatures in human NSCLC.

3.
Nat Commun ; 14(1): 1602, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959177

RESUMO

Interactions between cells and the extracellular matrix, mediated by integrin adhesion complexes, play key roles in fundamental cellular processes, including the sensing and transduction of mechanical cues. Here, we investigate systems-level changes in the integrin adhesome in patient-derived cutaneous squamous cell carcinoma cells and identify the actin regulatory protein Mena as a key node in the adhesion complex network. Mena is connected within a subnetwork of actin-binding proteins to the LINC complex component nesprin-2, with which it interacts and co-localises at the nuclear envelope. Moreover, Mena potentiates the interactions of nesprin-2 with the actin cytoskeleton and the nuclear lamina. CRISPR-mediated Mena depletion causes altered nuclear morphology, reduces tyrosine phosphorylation of the nuclear membrane protein emerin and downregulates expression of the immunomodulatory gene PTX3 via the recruitment of its enhancer to the nuclear periphery. We uncover an unexpected role for Mena at the nuclear membrane, where it controls nuclear architecture, chromatin repositioning and gene expression. Our findings identify an adhesion protein that regulates gene transcription via direct signalling across the nuclear envelope.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Cutâneas , Humanos , Actinas/genética , Actinas/metabolismo , Carcinoma de Células Escamosas/metabolismo , Núcleo Celular/metabolismo , Expressão Gênica , Integrinas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Membrana Nuclear/metabolismo , Lâmina Nuclear/metabolismo , Neoplasias Cutâneas/metabolismo
4.
Neuron ; 111(4): 508-525.e7, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36495869

RESUMO

In fragile X syndrome (FX), the leading monogenic cause of autism, excessive neuronal protein synthesis is a core pathophysiology; however, an overall increase in protein expression is not observed. Here, we tested whether excessive protein synthesis drives a compensatory rise in protein degradation that is protective for FX mouse model (Fmr1-/y) neurons. Surprisingly, although we find a significant increase in protein degradation through ubiquitin proteasome system (UPS), this contributes to pathological changes. Normalizing proteasome activity with bortezomib corrects excessive hippocampal protein synthesis and hyperactivation of neurons in the inferior colliculus (IC) in response to auditory stimulation. Moreover, systemic administration of bortezomib significantly reduces the incidence and severity of audiogenic seizures (AGS) in the Fmr1-/y mouse, as does genetic reduction of proteasome, specifically in the IC. Together, these results identify excessive activation of the UPS pathway in Fmr1-/y neurons as a contributor to multiple phenotypes that can be targeted for therapeutic intervention.


Assuntos
Síndrome do Cromossomo X Frágil , Camundongos , Animais , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/uso terapêutico , Proteostase , Bortezomib/metabolismo , Bortezomib/uso terapêutico , Proteína do X Frágil de Retardo Mental/genética , Modelos Animais de Doenças , Camundongos Knockout
5.
Nat Commun ; 13(1): 2883, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35610211

RESUMO

RNA-binding proteins play key roles in controlling gene expression in many organisms, but relatively few have been identified and characterised in detail in Gram-positive bacteria. Here, we globally analyse RNA-binding proteins in methicillin-resistant Staphylococcus aureus (MRSA) using two complementary biochemical approaches. We identify hundreds of putative RNA-binding proteins, many containing unconventional RNA-binding domains such as Rossmann-fold domains. Remarkably, more than half of the proteins containing helix-turn-helix (HTH) domains, which are frequently found in prokaryotic transcription factors, bind RNA in vivo. In particular, the CcpA transcription factor, a master regulator of carbon metabolism, uses its HTH domain to bind hundreds of RNAs near intrinsic transcription terminators in vivo. We propose that CcpA, besides acting as a transcription factor, post-transcriptionally regulates the stability of many RNAs.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Proteínas de Bactérias/metabolismo , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Sequências Hélice-Volta-Hélice/genética , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/metabolismo , Ligação Proteica , Proteoma/metabolismo , RNA/metabolismo , Fatores de Transcrição/metabolismo
6.
J Pers Med ; 11(8)2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34442440

RESUMO

Radiotherapy (RT) is an important treatment modality for the local control of breast cancer (BC). Unfortunately, not all patients that receive RT will obtain a therapeutic benefit, as cancer cells that either possess intrinsic radioresistance or develop resistance during treatment can reduce its efficacy. For RT treatment regimens to become personalised, there is a need to identify biomarkers that can predict and/or monitor a tumour's response to radiation. Here we describe a novel method to identify such biomarkers. Liquid chromatography-mass spectrometry (LC-MS) was used on conditioned media (CM) samples from a radiosensitive oestrogen receptor positive (ER+) BC cell line (MCF-7) to identify cancer-secreted biomarkers which reflected a response to radiation. A total of 33 radiation-induced secreted proteins that had higher (up to 12-fold) secretion levels at 24 h post-2 Gy radiation were identified. Secretomic results were combined with whole-transcriptome gene expression experiments, using both radiosensitive and radioresistant cells, to identify a signature related to intrinsic radiosensitivity. Gene expression analysis assessing the levels of the 33 proteins showed that 5 (YBX3, EIF4EBP2, DKK1, GNPNAT1 and TK1) had higher expression levels in the radiosensitive cells compared to their radioresistant derivatives; 3 of these proteins (DKK1, GNPNAT1 and TK1) underwent in-lab and initial clinical validation. Western blot analysis using CM samples from cell lines confirmed a significant increase in the release of each candidate biomarker from radiosensitive cells 24 h after treatment with a 2 Gy dose of radiation; no significant increase in secretion was observed in the radioresistant cells after radiation. Immunohistochemistry showed that higher intracellular protein levels of the biomarkers were associated with greater radiosensitivity. Intracellular levels were further assessed in pre-treatment biopsy tissues from patients diagnosed with ER+ BC that were subsequently treated with breast-conserving surgery and RT. High DKK1 and GNPNAT1 intracellular levels were associated with significantly increased recurrence-free survival times, indicating that these two candidate biomarkers have the potential to predict sensitivity to RT. We suggest that the methods highlighted in this study could be utilised for the identification of biomarkers that may have a potential clinical role in personalising and optimising RT dosing regimens, whilst limiting the administration of RT to patients who are unlikely to benefit.

7.
J Cell Biol ; 220(5)2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33635313

RESUMO

The mammalian target of rapamycin complex 1 (mTORC1) integrates mitogenic and stress signals to control growth and metabolism. Activation of mTORC1 by amino acids and growth factors involves recruitment of the complex to the lysosomal membrane and is further supported by lysosome distribution to the cell periphery. Here, we show that translocation of lysosomes toward the cell periphery brings mTORC1 into proximity with focal adhesions (FAs). We demonstrate that FAs constitute discrete plasma membrane hubs mediating growth factor signaling and amino acid input into the cell. FAs, as well as the translocation of lysosome-bound mTORC1 to their vicinity, contribute to both peripheral and intracellular mTORC1 activity. Conversely, lysosomal distribution to the cell periphery is dispensable for the activation of mTORC1 constitutively targeted to FAs. This study advances our understanding of spatial mTORC1 regulation by demonstrating that the localization of mTORC1 to FAs is both necessary and sufficient for its activation by growth-promoting stimuli.


Assuntos
Adesões Focais/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Aminoácidos/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Células HeLa , Humanos , Membranas Intracelulares/metabolismo , Lisossomos/metabolismo , Camundongos , Transdução de Sinais/fisiologia
8.
Cell Stem Cell ; 28(5): 877-893.e9, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33631116

RESUMO

Point mutations within the histone H3.3 are frequent in aggressive childhood brain tumors known as pediatric high-grade gliomas (pHGGs). Intriguingly, distinct mutations arise in discrete anatomical regions: H3.3-G34R within the forebrain and H3.3-K27M preferentially within the hindbrain. The reasons for this contrasting etiology are unknown. By engineering human fetal neural stem cell cultures from distinct brain regions, we demonstrate here that cell-intrinsic regional identity provides differential responsiveness to each mutant that mirrors the origins of pHGGs. Focusing on H3.3-G34R, we find that the oncohistone supports proliferation of forebrain cells while inducing a cytostatic response in the hindbrain. Mechanistically, H3.3-G34R does not impose widespread transcriptional or epigenetic changes but instead impairs recruitment of ZMYND11, a transcriptional repressor of highly expressed genes. We therefore propose that H3.3-G34R promotes tumorigenesis by focally stabilizing the expression of key progenitor genes, thereby locking initiating forebrain cells into their pre-existing immature state.


Assuntos
Neoplasias Encefálicas , Glioma , Células-Tronco Neurais , Neoplasias Encefálicas/genética , Carcinogênese/genética , Glioma/genética , Histonas/genética , Humanos , Mutação/genética
9.
Wellcome Open Res ; 6: 3, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33604454

RESUMO

Condensin complexes compact and disentangle chromosomes in preparation for cell division. Commercially available antibodies raised against condensin subunits have been widely used to characterise their cellular interactome. Here we have assessed the specificity of a polyclonal antibody (Bethyl A302-276A) that is commonly used as a probe for NCAPH2, the kleisin subunit of condensin II, in mammalian cells. We find that, in addition to its intended target, this antibody cross-reacts with one or more components of the SWI/SNF family of chromatin remodelling complexes in an NCAPH2-independent manner. This cross-reactivity, with an abundant chromatin-associated factor, is likely to affect the interpretation of protein and chromatin immunoprecipitation experiments that make use of this antibody probe.

10.
Mol Cancer Res ; 19(2): 274-287, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33097627

RESUMO

Elevated NF-κB activity is a contributory factor in many hematologic and solid malignancies. Nucleolar sequestration of NF-κB/RelA represses this elevated activity and mediates apoptosis of cancer cells. Here, we set out to understand the mechanisms that control the nuclear/nucleolar distribution of RelA and other regulatory proteins, so that agents can be developed that specifically target these proteins to the organelle. We demonstrate that RelA accumulates in intranucleolar aggresomes in response to specific stresses. We also demonstrate that the autophagy receptor, SQSTM1/p62, accumulates alongside RelA in these nucleolar aggresomes. This accumulation is not a consequence of inhibited autophagy. Indeed, our data suggest nucleolar and autophagosomal accumulation of p62 are in active competition. We identify a conserved motif at the N-terminus of p62 that is essential for nucleoplasmic-to-nucleolar transport of the protein. Furthermore, using a dominant-negative mutant deleted for this nucleolar localization signal (NoLS), we demonstrate a role for p62 in trafficking RelA and other aggresome-related proteins to nucleoli, to induce apoptosis. Together, these data identify a novel role for p62 in trafficking nuclear proteins to nucleolar aggresomes under conditions of cell stress, thus maintaining cellular homeostasis. They also provide invaluable information on the mechanisms that regulate the nuclear/nucleolar distribution of RelA that could be exploited for therapeutic purpose. IMPLICATIONS: The data open up avenues for the development of a unique class of therapeutic agents that act by targeting RelA and other aberrantly active proteins to nucleoli, thus killing cancer cells.


Assuntos
NF-kappa B/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteína Sequestossoma-1/metabolismo , Apoptose , Autofagia , Células Cultivadas , Humanos , Transdução de Sinais
11.
J Biol Chem ; 295(34): 12045-12057, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32616651

RESUMO

Ambra1 is considered an autophagy and trafficking protein with roles in neurogenesis and cancer cell invasion. Here, we report that Ambra1 also localizes to the nucleus of cancer cells, where it has a novel nuclear scaffolding function that controls gene expression. Using biochemical fractionation and proteomics, we found that Ambra1 binds to multiple classes of proteins in the nucleus, including nuclear pore proteins, adaptor proteins such as FAK and Akap8, chromatin-modifying proteins, and transcriptional regulators like Brg1 and Atf2. We identified biologically important genes, such as Angpt1, Tgfb2, Tgfb3, Itga8, and Itgb7, whose transcription is regulated by Ambra1-scaffolded complexes, likely by altering histone modifications and Atf2 activity. Therefore, in addition to its recognized roles in autophagy and trafficking, Ambra1 scaffolds protein complexes at chromatin, regulating transcriptional signaling in the nucleus. This novel function for Ambra1, and the specific genes impacted, may help to explain the wider role of Ambra1 in cancer cell biology.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cromatina/metabolismo , Regulação da Expressão Gênica , Complexos Multiproteicos/metabolismo , Transdução de Sinais , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ancoragem à Quinase A/metabolismo , Fator 2 Ativador da Transcrição/genética , Fator 2 Ativador da Transcrição/metabolismo , Transporte Ativo do Núcleo Celular/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Angiopoietina-1/biossíntese , Angiopoietina-1/genética , Linhagem Celular , Cromatina/genética , DNA Helicases/genética , DNA Helicases/metabolismo , Quinase 1 de Adesão Focal/genética , Quinase 1 de Adesão Focal/metabolismo , Humanos , Cadeias alfa de Integrinas/biossíntese , Cadeias alfa de Integrinas/genética , Cadeias beta de Integrinas/biossíntese , Cadeias beta de Integrinas/genética , Complexos Multiproteicos/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta2/biossíntese , Fator de Crescimento Transformador beta2/genética , Fator de Crescimento Transformador beta3/biossíntese , Fator de Crescimento Transformador beta3/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...